Resumen

Row

Última actualización de datos realizada el 2020-07-02 con base en los datos publicados por el Ministerio de Salud de Costa Rica.

Row

Casos positivos

4,023

Casos activos

2,417 (60.1%)

Casos recuperados

1,589 (39.5%)

Casos fallecidos

17 (0.4%)

Row

Hospitalizados

60

En salón

54 (90%)

En UCI

6 (10%)

Row

Gráfico de variación de las cantidades de casos en el tiempo

Tabla de cantidades de casos en cantones

Casos positivos

Row

Última actualización de datos: 2020-07-02

Row

Casos positivos

4,023

Row

Mapa de casos positivos en cantones

Gráfico de cantones con mayor cantidad de casos positivos

Casos activos

Row

Última actualización de datos realizada el 2020-07-02 con base en los datos publicados por el Ministerio de Salud de Costa Rica.

Casos recuperados

Row

Última actualización de datos realizada el 2020-07-02 con base en los datos publicados por el Ministerio de Salud de Costa Rica.

Casos fallecidos

Row

Última actualización de datos realizada el 2020-07-02 con base en los datos publicados por el Ministerio de Salud de Costa Rica.

Casos en distritos

Row

Última actualización de datos realizada el 2020-07-02 con base en los datos publicados por el Ministerio de Salud de Costa Rica.

---
title: "Estado del COVID-19 en Costa Rica"
output: 
  flexdashboard::flex_dashboard:
    orientation: rows
    social: menu
    source_code: embed
    vertical_layout: fill    
---

```{r setup, include=FALSE}

#-------------------- Paquetes --------------------

library(flexdashboard)
library(plotly)
library(dplyr)
library(tidyr)
library(sf)
library(leaflet)

#-------------------- Colores ---------------------

color_positivos <- 'blue'
color_activos <- 'red'
color_recuperados <- 'green'
color_fallecidos <- 'purple'

color_nuevos_positivos <- 'pink'

color_hospitalizados <- 'pink'
color_salon <- 'pink'
color_uci <- 'pink'

#--------------------- Íconos ---------------------

icono_positivos <- 'fas fa-user-md'
icono_activos <- 'fas fa-user-md'
icono_recuperados <- 'fas fa-user-md'
icono_fallecidos <- 'fas fa-user-md'

icono_nuevos_positivos <- 'fas fa-user-md'

icono_hospitalizados <- 'fas fa-user-md'
icono_salon <- 'fas fa-user-md'
icono_uci <- 'fas fa-user-md'

#--------------- Otros parámetros -----------------

# Separador para lectura de datos CSV
caracter_separador <- ','

#--------------- Archivos de datos ----------------

archivo_general_pais <- 'https://raw.githubusercontent.com/geoprocesamiento-2020i/datos/master/covid19/ms/07_02_CSV_GENERAL.csv'

archivo_positivos_cantones <- 'https://raw.githubusercontent.com/geoprocesamiento-2020i/datos/master/covid19/ms/07_02_CSV_POSITIVOS.csv'
archivo_activos_cantones <- 'https://raw.githubusercontent.com/geoprocesamiento-2020i/datos/master/covid19/ms/07_02_CSV_ACTIVOS.csv'
archivo_recuperados_cantones <- 'https://raw.githubusercontent.com/geoprocesamiento-2020i/datos/master/covid19/ms/07_02_CSV_RECUP.csv'
archivo_fallecidos_cantones <- 'https://raw.githubusercontent.com/geoprocesamiento-2020i/datos/master/covid19/ms/07_02_CSV_FALLECIDOS.csv'

#---------------------- Datos ---------------------

# Data frame de datos generales por país
df_general_pais <- read.csv(archivo_general_pais, sep = caracter_separador)
df_general_pais$FECHA <- as.Date(df_general_pais$FECHA, "%d/%m/%Y")

# Data frame de datos generales por país en la última fecha
df_general_pais_ultima_fecha <- 
  df_general_pais %>%
  filter(FECHA == max(FECHA, na.rm = TRUE))

# Data frame de casos positivos por cantón
df_positivos_cantones_ancho <- read.csv(archivo_positivos_cantones, sep = caracter_separador)
df_positivos_cantones <-
  df_positivos_cantones_ancho %>%
  pivot_longer(cols = c(-cod_provin, -provincia, -cod_canton, -canton), names_to = "fecha", values_to = "positivos")
df_positivos_cantones$fecha <- as.Date(df_positivos_cantones$fecha, "X%d.%m.%Y")

# Data frame de casos positivos por cantón en la última fecha
df_positivos_cantones_ultima_fecha <- 
  df_positivos_cantones %>%
  filter(fecha == max(fecha, na.rm = TRUE)) %>%
  select(cod_canton, positivos)


# Objeto sf de cantones
# Carga desde el servicio WFS del SNIT
# url_base_wfs_ign_5mil <- "http://geos.snitcr.go.cr/be/IGN_5/wfs?"
# solicitud_wfs_ign_5mil_cantones <- "request=GetFeature&service=WFS&version=2.0.0&typeName=IGN_5:limitecantonal_5k&outputFormat=application/json"
# sf_cantones <-
#   st_read(paste0(url_base_wfs_ign_5mil, solicitud_wfs_ign_5mil_cantones)) %>%
#   st_simplify(dTolerance = 1000) %>%
#   st_transform(4326)
# Carga desde un archivo GeoJSON simplificado
sf_cantones <- st_read('https://raw.githubusercontent.com/geoprocesamiento-2020i/datos/master/delimitacion-territorial-administrativa/cr/ign/cr_limite_cantonal_ign_wgs84.geojson')

# Objeto sf de casos positivos en cantones en la última fecha
sf_positivos_cantones_ultima_fecha <-
  left_join(sf_cantones, df_positivos_cantones_ultima_fecha, by = c('cod_canton')) %>%
  arrange(desc(positivos))


# CÓDIGO PARA LA SECCIÓN OPCIONAL DE LA TAREA PROGRAMADA

# Archivo CSV que proviene de la hoja con datos de distritos del archivo Excel con datos generales
archivo_general_distritos <- 'https://raw.githubusercontent.com/geoprocesamiento-2020i/datos/master/covid19/ms/07_02_CSV_GENERAL_DISTRITOS.csv'

# Carga del archivo CSV en un data frame
df_general_distritos_sucio <- read.csv(archivo_general_distritos)

# Eliminación de filas y columnas que corresponden a encabezados, totales, etc.
df_general_distritos_ultima_fecha <- df_general_distritos_sucio[-c(1:5), -c(1, 3, 10, 11)]

# Cambio de nombre de las columnas
df_general_distritos_ultima_fecha <- 
  df_general_distritos_ultima_fecha %>%
  rename(provincia = X.1,
         canton = X.3,
         distrito = X.4,
         positivos = X.5,
         recuperados = X.6,
         fallecidos = X.7,
         activos = X.8
  ) %>%  
  mutate_all(funs(sub("^\\s*$", NA, .))) %>% # Se llenan con NA las celdas con espacios vacíos
  mutate(distrito = if_else(distrito == "El Carmen", "Carmen", distrito)) %>%
  mutate(distrito = if_else(distrito == "Valle de La Estrella", "Valle La Estrella", distrito)) %>%
  mutate(distrito = if_else(distrito == "La Amistad", "La  Amistad", distrito)) %>%
  fill(c(1,2)) # Se rellenan "hacia abajo" las columnas de provincia y cantón con valor NA

# Borrado de las filas con valor de NA o de "Sin información de distrito" en la columna de distrito
df_general_distritos_ultima_fecha <- df_general_distritos_ultima_fecha[!is.na(df_general_distritos_ultima_fecha$distrito), ]
df_general_distritos_ultima_fecha <- df_general_distritos_ultima_fecha[df_general_distritos_ultima_fecha$distrito != 'Sin información de distrito', ]

# Conversión a integer de los tipos de datos de las columnas con cifras
df_general_distritos_ultima_fecha$positivos <- as.integer(df_general_distritos_ultima_fecha$positivos)
df_general_distritos_ultima_fecha$recuperados <- as.integer(df_general_distritos_ultima_fecha$recuperados)
df_general_distritos_ultima_fecha$fallecidos <- as.integer(df_general_distritos_ultima_fecha$fallecidos)
df_general_distritos_ultima_fecha$activos <- as.integer(df_general_distritos_ultima_fecha$activos)

# Objeto sf de distritos
sf_distritos <- st_read('https://raw.githubusercontent.com/geoprocesamiento-2020i/datos/master/delimitacion-territorial-administrativa/cr/ign/cr_limite_distrital_ign_wgs84.geojson')

# Objeto sf de casos positivos en distritos en la última fecha
sf_general_distritos_ultima_fecha <-
  left_join(sf_distritos, df_general_distritos_ultima_fecha, by = c('provincia', 'canton', 'distrito'))

```

Resumen
=======================================================================
Row {data-height=10}
-----------------------------------------------------------------------
### **Última actualización de datos realizada el `r  df_general_pais_ultima_fecha$FECHA` con base en los [datos publicados por el Ministerio de Salud de Costa Rica](http://geovision.uned.ac.cr/oges/)**.


Row
-----------------------------------------------------------------------

### Casos positivos {.value-box}
```{r}
valueBox(value = paste(format(df_general_pais_ultima_fecha$positivos, big.mark = ","), "", sep = " "), 
         caption = "Total de casos positivos", 
         icon = icono_positivos, 
         color = color_positivos
)
```

### Casos activos {.value-box}
```{r}
valueBox(value = paste(format(df_general_pais_ultima_fecha$activos, big.mark = ","), " (",
                       round(100 * df_general_pais_ultima_fecha$activos / df_general_pais_ultima_fecha$positivos, 1), 
                       "%)", sep = ""), 
         caption = "Total de casos activos",
         icon = icono_positivos, 
         color = color_activos
)
```

### Casos recuperados {.value-box}
```{r}
valueBox(value = paste(format(df_general_pais_ultima_fecha$RECUPERADOS, big.mark = ","), " (",
                       round(100 * df_general_pais_ultima_fecha$RECUPERADOS / df_general_pais_ultima_fecha$positivos, 1), 
                       "%)", sep = ""), 
         caption = "Total de casos recuperados",
         icon = icono_positivos, 
         color = color_recuperados
)
```

### Casos fallecidos {.value-box}
```{r}
valueBox(value = paste(format(df_general_pais_ultima_fecha$fallecidos, big.mark = ","), " (",
                       round(100 * df_general_pais_ultima_fecha$fallecidos / df_general_pais_ultima_fecha$positivos, 1), 
                       "%)", sep = ""), 
         caption = "Total de casos fallecidos",
         icon = icono_positivos, 
         color = color_fallecidos
)
```

Row
-----------------------------------------------------------------------

### Hospitalizados {.value-box}
```{r}
valueBox(value = paste(format(df_general_pais_ultima_fecha$hospital, big.mark = ","), "", sep = " "), 
         caption = "Total de hospitalizados", 
         icon = icono_hospitalizados,
         color = color_hospitalizados
)
```

### En salón {.value-box}
```{r}
valueBox(value = paste(format(df_general_pais_ultima_fecha$salon, big.mark = ","), " (",
                       round(100 * df_general_pais_ultima_fecha$salon / df_general_pais_ultima_fecha$hospital, 1), 
                       "%)", sep = ""), 
         caption = "Hospitalizados en salón",
         icon = icono_salon, 
         color = color_salon
)
```

### En UCI {.value-box}
```{r}
valueBox(value = paste(format(df_general_pais_ultima_fecha$UCI, big.mark = ","), " (",
                       round(100 * df_general_pais_ultima_fecha$UCI / df_general_pais_ultima_fecha$hospital, 1), 
                       "%)", sep = ""), 
         caption = "Hospitalizados en UCI",
         icon = icono_uci, 
         color = color_uci
)
```

Row {data-width=400}
-----------------------------------------------------------------------

### Gráfico de variación de las cantidades de casos en el tiempo
```{r}
plot_ly(data = df_general_pais,
                x = ~ FECHA,
                y = ~ positivos, 
                name = 'Positivos', 
                type = 'scatter',
                mode = 'lines',
                line = list(color = color_positivos)) %>%
  add_trace(y = ~ activos,
                    name = 'Activos',
                    mode = 'lines',
                    line = list(color = color_activos)) %>%
  add_trace(y = ~ RECUPERADOS,
                    name = 'Recuperados',
                    mode = 'lines',
                    line = list(color = color_recuperados)) %>%
  add_trace(y = ~ fallecidos,
                    name = 'Fallecidos',
                    mode = 'lines',
                    line = list(color = color_fallecidos)) %>%  
  layout(title = "",
                 yaxis = list(title = "Cantidad de casos"),
                 xaxis = list(title = "Fecha"),
                 legend = list(x = 0.1, y = 0.9),
                 hovermode = "compare")
```

### Tabla de cantidades de casos en cantones
```{r}
st_drop_geometry(sf_positivos_cantones_ultima_fecha) %>% 
  select(Provincia = provincia, Canton = canton, Positivos = positivos) %>%
  DT::datatable(rownames = FALSE,
                options = list(searchHighlight = TRUE, 
                               language = list(url = '//cdn.datatables.net/plug-ins/1.10.11/i18n/Spanish.json')
                               )
  )
```

Casos positivos
=======================================================================
Row {data-height=1}
-----------------------------------------------------------------------
### **Última actualización de datos: `r  df_general_pais_ultima_fecha$FECHA`**


Row
-----------------------------------------------------------------------

### Casos positivos {.value-box}
```{r}
valueBox(value = paste(format(df_general_pais_ultima_fecha$positivos, big.mark = ","), "", sep = " "), 
         caption = "Total de casos positivos", 
         icon = icono_positivos, 
         color = color_positivos
)
```

Row {data-width=400}
-----------------------------------------------------------------------

### Mapa de casos positivos en cantones
```{r}

paleta_azul <- colorBin(palette = "Blues", 
                        domain = sf_positivos_cantones_ultima_fecha$positivos,
                        bins = 10
               )

leaflet_cantones <- leaflet(sf_positivos_cantones_ultima_fecha) %>% 
  fitBounds(lng1 = -86, lng2 = -82, lat1 = 8, lat2 = 11) %>%
  addProviderTiles(providers$OpenStreetMap.Mapnik, group = "OpenStreetMap") %>%
  addPolygons(fillColor = ~paleta_azul(positivos), stroke=T, fillOpacity = 1,
              color="black", weight=0.2, opacity= 0.5,
              group = "Cantones",
              popup = paste("Provincia: ", sf_positivos_cantones_ultima_fecha$provincia, "
", "Cantón: ", sf_positivos_cantones_ultima_fecha$canton, "
", "Positivos: ", sf_positivos_cantones_ultima_fecha$positivos ) ) %>% addLegend("bottomright", pal = paleta_azul, values = ~positivos, title = "Casos positivos", opacity = 1 ) %>% addLayersControl( baseGroups = c("OpenStreetMap"), overlayGroups = c("Cantones"), options = layersControlOptions(collapsed = TRUE) ) %>% addMiniMap( toggleDisplay = TRUE, position = "bottomleft", tiles = providers$OpenStreetMap.Mapnik ) # Despliegue del mapa leaflet_cantones ``` ### Gráfico de cantones con mayor cantidad de casos positivos ```{r} st_drop_geometry(sf_positivos_cantones_ultima_fecha) %>% mutate(canton = factor(canton, levels = canton)) %>% top_n(n = 10, wt = positivos) %>% plot_ly(x = ~ canton, y = ~ positivos, type = "bar", text = ~ positivos, textposition = 'auto', marker = list(color = color_positivos) ) %>% layout(yaxis = list(title = "Cantidad de casos positivos"), xaxis = list(title = ""), margin = list(l = 10, r = 10, b = 10, t = 10, pad = 2 ) ) ``` Casos activos ======================================================================= Row {data-height=10} ----------------------------------------------------------------------- ### **Última actualización de datos realizada el `r df_general_pais_ultima_fecha$FECHA` con base en los [datos publicados por el Ministerio de Salud de Costa Rica](http://geovision.uned.ac.cr/oges/)**. Casos recuperados ======================================================================= Row {data-height=10} ----------------------------------------------------------------------- ### **Última actualización de datos realizada el `r df_general_pais_ultima_fecha$FECHA` con base en los [datos publicados por el Ministerio de Salud de Costa Rica](http://geovision.uned.ac.cr/oges/)**. Casos fallecidos ======================================================================= Row {data-height=10} ----------------------------------------------------------------------- ### **Última actualización de datos realizada el `r df_general_pais_ultima_fecha$FECHA` con base en los [datos publicados por el Ministerio de Salud de Costa Rica](http://geovision.uned.ac.cr/oges/)**. Casos en distritos ======================================================================= Row {data-height=10} ----------------------------------------------------------------------- ### **Última actualización de datos realizada el `r df_general_pais_ultima_fecha$FECHA` con base en los [datos publicados por el Ministerio de Salud de Costa Rica](http://geovision.uned.ac.cr/oges/)**.